Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References

Weak-type (1, 1) property for the Riesz transforms

Polymath REU Riesz Transform Group

Polymath REU

August 15, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References
●0000	0000		000000	0
Basic Nota	tions			

• $\mathbb{R} = set of real numbers$

•
$$\mathbb{R}^n = \{x = (x_1, x_2, \dots, x_n) : x_k \in \mathbb{R}\}, \quad |x| = \left(\sum_{k=1}^n x_k^2\right)^{\frac{1}{2}}$$

-

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$\chi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

• $\delta_c(x)^{"} = " \begin{cases} 1 & x = c \\ 0 & x \neq c \end{cases}$
• $|E| = \text{"measure" of } E \subseteq \mathbb{R}^n \text{ (length, area, volume, etc.)} \end{cases}$

• $|\{x \in \mathbb{R}^n : |f(x)| > \lambda\}|$ = the distribution function of f

Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References
0●000	0000		000000	0
Hilbert Tra	nsform and	Riesz Transforms		

Definition

The Hilbert transform, H, satisfies

$$Hf(x) = rac{1}{\pi} \int_{\mathbb{R}} rac{1}{x-y} f(y) \, dy.$$

Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References
0●000	0000		000000	0
Hilbert Trai	nsform and	Riesz Transforms		

Definition

The **Hilbert transform**, *H*, satisfies

$$Hf(x) = rac{1}{\pi} \int_{\mathbb{R}} rac{1}{x-y} f(y) \, dy.$$

Definition

For $j \in \{1, 2, ..., n\}$, the j^{th} **Riesz transform**, R_j , satisfies

$$R_j f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \int_{\mathbb{R}^n} \frac{x_j - y_j}{|x - y|^{n+1}} f(y) \, dy.$$

When n=1, the Riesz transform reduces to the Hilbert transform.

Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References
00●00	0000		000000	0
$L^p(\mathbb{R}^n)$ be	ounds			

Definition $(L^p(\mathbb{R}^n) \text{ space})$

For $p \geq 1$, the $L^{p}(\mathbb{R}^{n})$ space is the space of functions where

$$\|f\|_{L^p(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |f(x)|^p \, dx\right)^{1/p} < \infty.$$

Theorem

The Riesz transforms are bounded from $L^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ if and only if $1 . In other words, <math>||R_j f||_{L^p(\mathbb{R}^n)} \leq C ||f||_{L^p(\mathbb{R}^n)}$ for some fixed C. This is known as the **strong type** (**p**, **p**) **property**.

However, the Riesz transforms fail to be bounded on $L^1(\mathbb{R}^n)$. We instead study the **weak-type** (1,1) property for the Riesz transforms.

Basic definitions 000●0	Existing Works 0000	Reduction of the Problem	A Geometric Proof	References 0
Weak-type	(1 1) Pror	pertv		

Definition (Weak-type (1, 1) Property)

A linear operator T is said to have the weak-type (1,1) property if there exists C > 0 such that

$$|\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}| \le \frac{C}{\lambda} ||f||_{L^1(\mathbb{R}^n)}$$

for all $\lambda > 0$ and all $f \in L^1(\mathbb{R}^n)$. The infimum over all such C > 0 is denoted $||T||_{L^1(\mathbb{R}^n) \to L^{1,\infty}(\mathbb{R}^n)}$.

Theorem

The Hilbert transform and Riesz transforms have the weak-type (1,1) property.

Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References
0000●	0000		000000	0
Our Proble	ms			

Question 1

Determine $||R_j||_{L^1(\mathbb{R}^n)\to L^{1,\infty}(\mathbb{R}^n)}$. Do we have a constant independent of the dimension n?

Question 2

For $\lambda > 0$, $E \subseteq \mathbb{R}^2$ with finite measure, and $\nu = \sum_{k=1}^{N} a_k \delta_{c_k}$ with each $a_k > 0$, compute or bound

$$|\{x \in \mathbb{R}^2 : |R_j \chi_E(x)| > \lambda\}|$$

and

$$|\{x \in \mathbb{R}^2 : |R_j\nu(x)| > \lambda\}|.$$

Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References
00000	●000		000000	O
Existing Wo	ork from Lo	omis		

Notice that

$$H\delta_c(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{x-y} \, d\delta_c(y) = \frac{1}{\pi} \frac{1}{x-c}.$$

More generally, if $\nu = \sum_{k=1}^{N} a_k \delta_{c_k}$, then

$$H\nu(x) = \frac{1}{\pi} \sum_{k=1}^{N} \frac{a_k}{x - c_k}$$

Theorem (Loomis 1946)

If
$$\nu = \sum_{k=1}^{N} a_k \delta_{c_k}$$
 with each $a_k > 0$, then
 $|\{x \in \mathbb{R} : |H\nu(x)| > \lambda\}| = \frac{2}{\pi\lambda} \sum_{k=1}^{N} a_k.$

Theorem (Dimension-free $L^{p}(\mathbb{R}^{n})$ Bounds)

For any $n \in \mathbb{Z}^+$, $j \in \{1, ..., n\}$, and 1 , the smallest constant <math>C > 0 such that $||R_j f||_{L^p(\mathbb{R}^n)} \leq C ||f||_{L^p(\mathbb{R}^n)}$ for all $f \in L^p(\mathbb{R}^n)$ is given by

$$\mathcal{C} = egin{cases} angle { ext{tan}igg(rac{\pi}{2p}igg)} & 1$$

In the 1980's, Stein asked if the smallest constant in the weak-type (1, 1) property is also dimension-free. Classical arguments for the weak-type (1, 1) property use the Calderón-Zygmund decomposition and give that $||R_j||_{L^1(\mathbb{R}^n)\to L^{1,\infty}(\mathbb{R}^n)}$ depends at worst exponentially on *n*. Janakiraman (2004) and Spector and Stockdale (2020) gave two different proofs which improve this dependence to log *n*. It is currently unknown whether this dependence on *n* can be removed completely.

Basic definitions	Existing Works 00●0	Reduction of the Problem	A Geometric Proof 000000	References 0
Reduction	to Dirac M	asses		

It turns out that we can reduce our question to studying linear combinations of Dirac masses.

Theorem (Spector-Stockdale 2020)

There exists (dimension-free) C > 0 such that

$$|\{x \in \mathbb{R}^n : |R_j f(x)| > \lambda\}| \le C \left[\frac{1}{\lambda} \|f\|_{L^1(\mathbb{R}^n)} + \sup_{\nu} |\{|R_j \nu| > \lambda\}|\right]$$

for any $\lambda > 0$ and $f \in L^1(\mathbb{R}^n)$, where the supremum is taken over all finite linear combinations of Dirac masses $\sum_{k=1}^N a_k \delta_{c_k}$ with $c_k \in \mathbb{R}^n$ and positive a_k satisfying $\sum_{k=1}^N a_k \leq 16 \|f\|_{L^1(\mathbb{R}^n)}$

The term involving the supremum is where the dependence on the dimension appears, and is therefore of interest to bound.

 Basic definitions
 Existing Works
 Reduction of the Problem
 A Geometric Proof
 References

 0000
 000
 000
 000000
 0000000
 0000000

How this Simplifies the Problem

The reduction to Dirac masses is useful because R_j applied to Dirac masses is an explicit rational function.

A more detailed description of our goal

Given a finite set of Dirac masses in the Euclidean space \mathbb{R}^n with mass $\{a_1, ..., a_N\}$ and location $\{c_1, ..., c_N\}$, we want to find the optimal C > 0 such that

$$\begin{split} |\{x \in \mathbb{R}^n : |R_j\nu(x)| > \lambda\}| &= \left| \left\{ x \in \mathbb{R}^n : \left| \sum_{k=1}^N a_k \frac{(x - c_k)_j}{|x - c_k|^{n+1}} \right| > \lambda \right\} \right| \\ &\leq \frac{C}{\lambda} \sum_{k=1}^N a_k, \end{split}$$

where ν is the linear combination of the Dirac Masses.

00000	0000		000000	0		
Integer masses are enough						

Claim (Polymath REU 2020)

It is enough to consider sums (instead of linear combinations) of Dirac masses, i.e. $\sum_{k=1}^{N} \delta_{c_k}$.

- *Reduce arbitrary linear combinations into positive linear combinations.*
- Reduce positive linear combinations into positive rational linear combinations. (Density)
- Reduce positive rational linear combinations into positive integer linear combinations.

Lemma (Polymath REU 2020)

If $\nu = \sum a_k \delta_{c_k}$ where each $a_k > 0$ and $\sum a_k = 1$ and C > 0 is such that $|\{x : |R_j\nu(x)\}| > \lambda| \le \frac{C}{\lambda} \|\nu\|$, then for any t > 0, we have $|\{x : |R_j(t\delta)(x)| > \lambda\}| \le \frac{C}{\lambda} \|t\nu\|$.

Integer no	oints are end	hugh		
Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References
	0000	○●	000000	0

Claim (Polymath REU 2020)

It is enough to consider sums of Dirac Masses positioned at integer points, i.e. $\sum_{k=1}^{N} \delta_{c_k}$ with each $c_k \in \mathbb{Z}^n$.

- Reduce arbitrary points to rational points. (Density)
- Reduce rational points to integer points. (Dilate)

Lemma (Polymath REU 2020)

If $c_k \in \mathbb{R}^n$ for k = 1, ..., N and the measure of the resulting region induced by distribution function at $\lambda > 0$ is of $O(\frac{N}{\lambda})$, then we can dilate the set of points into $\{t c_k\}$ for any positive t, and the measure of region induced by distribution function of λ is still of $O(\frac{N}{\lambda})$.

We use these reductions to give a new geometric proof of the weak-type (1,1) inequality for the 2-dimensional Riesz transforms applied to sums of Dirac masses.

• Draw a square whose center is c_1 and side length is $\frac{8}{\sqrt{\lambda}}$, call this square *S*.

- If there exists $c_2 \in S$, and $d(c_2, \partial S) \ge \frac{3}{\sqrt{\lambda}}$, then we draw a square with side length $\frac{8}{\sqrt{\lambda}}$ next to S.
- If there exists $c_9 \in S$, and $d(c_9, \partial S) \ge \frac{3}{\sqrt{\lambda}}$, then there are 8 squares with side length $\frac{8}{\sqrt{\lambda}}$ surrounding S.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

. . .

Basic definitions	Existing Works 0000	Reduction of the Problem	A Geometric Proof	References 0
Covering :	algorithm c	ont		

- If there exists $c_k \in S$ with k < 9 and $d(c_k, \partial S) < \frac{3}{\sqrt{\lambda}}$, then we draw a square with side length $\frac{8}{\sqrt{\lambda}}$ at the place next to S and closest to c_k .
- If there exists $c_k \in S$ and $k \ge 10$, we draw a square with length $\frac{8}{\sqrt{\lambda}}$ next to the existing squares in any direction.
- Repeat this process until every c_k has a corresponding square with length $\frac{8}{\sqrt{\lambda}}$.

We claim that for any permutation of $c_2,...,c_8$, and for all x outside the union of squares,

$$\left|\sum_{k=1}^{8} \frac{(x-c_k)_j}{|x-c_k|^3}\right| \le \lambda$$

Extreme Case: $c_1 = (0,0)$, $c_2 = c_3... = c_8 = (\frac{1}{\sqrt{\lambda}}, 0)$, $x = (\frac{4}{\sqrt{\lambda}}, 0)$

• From the covering algorithm, each c_k is assigned to a square, hence the total covering area is $N \frac{8^2}{\lambda}$

$$|\{x \in \mathbb{R}^2 : |R_j \nu(x)| > \lambda| \le \frac{64N}{\lambda} = \frac{64}{\lambda} \|\nu\|$$

• However, we cover the region by squares which makes the constant blow up as dimension increases.

$$|\{x \in \mathbb{R}^n : |R_j\nu(x)| > \lambda| \leq \frac{8^n N}{\lambda} = \frac{8^n}{\lambda} \|\nu\|.$$

Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References			
00000	0000		00000●	0			
Future Works							

- Work on a cover by balls rather than squares so that we can find a bound independent of dimension.
- Work on different measure spaces on a similar problem for Hilbert and Riesz Transform.
- Work on a similar problem using different linear operators (like Bergman Projection).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Basic definitions	Existing Works	Reduction of the Problem	A Geometric Proof	References			
00000	0000		000000	•			
References							

References

- L. Grafakos, *Classical Fourier analysis*, Third edition, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014.
- L. Grafakos, *Modern Fourier analysis*, Third edition, Graduate Texts in Mathematics, vol. 250, Springer, New York, 2014.
- P. Janakiraman, Weak-type estimates for singular integrals and the Riesz transform, Indiana Univ. Math. J. 53 (2004), no. 2, 533–555.
- L. H. Loomis, *A note on the Hilbert transform*, Bull. Amer. Math. Soc. **52** (1946), no. 12, 1082–1086.
- D. Spector and C. B. Stockdale, *On the dimensional weak-type* (1, 1) *bound for Riesz transforms*, Arxiv e-prints 2004.03382 (2020).
- E. M. Stein, *Problems in harmonic analysis related to curvature and oscillatory integrals*, Proceedings of the ICM, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, (1987), 196–221.